
Improving Native-Image Startup Performance
Matteo Basso

matteo.basso@usi.ch
Università della Svizzera italiana (USI)

Switzerland

Aleksandar Prokopec
aleksandar.prokopec@oracle.com

Oracle Labs
Switzerland

Andrea Rosà
andrea.rosa@usi.ch

Università della Svizzera italiana (USI)
Switzerland

Walter Binder
walter.binder@usi.ch

Università della Svizzera italiana (USI)
Switzerland

Abstract
With the increasing popularity of Serverless computing and
Function as a Service—where typical workloads have a short
lifetime—the research community is increasingly focusing
on startup performance optimization. To reduce the startup
time of managed language runtime systems, related work
proposes strategies to move runtime environment initial-
ization ahead-of-time. For instance, GraalVM Native Image
allows one to create a binary file from a Java application
that embeds a snapshot of the pre-initialized heap memory
and can run without instantiating a Java Virtual Machine.
However, the program startup needs to be further optimized,
because the cloud runtime often starts the program while
responding to the request [3, 40]. Thus, the program startup
time impacts the service-level agreement.
In this paper, we improve the startup time of Native-

Image binaries by changing their layout during compilation,
reducing I/O traffic. We propose a profile-guided binary-
reordering approach and a profiling methodology to obtain
the execution-order profiles of methods and objects. Thanks
to these profiles, we first reduce page faults related to the
code section. Then, we propose three ordering strategies to
reduce page faults related to accessing the objects in the heap
snapshot. Since the object identities and the heap-snapshot
contents are not persistent across Native-Image builds of the
same program, we propose a method of matching objects
from the profile against the objects in the profile-guided
build. Experimental results show that our ordering strate-
gies lead to an average page-fault reduction factor of 1.65×
when using a Solid-state Drive (SSD), and of 1.68× when
using Network File System (NFS). This reduction results in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

an average execution-time speedup of 1.59× (SSD) and 1.58×
(NFS).

CCS Concepts: • Software and its engineering→ Com-
pilers; Software performance; File systems management;
Virtual machines; • Computer systems organization→
Cloud computing.

Keywords: GraalVM, Native Image, Startup Performance,
Profiling, Serverless Computing, Function as a Service.

ACM Reference Format:
Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter
Binder. 2024. Improving Native-Image Startup Performance. In
Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
In contrast to long-running server-side workloads where
steady-state performance is crucial, modern short-running
workloads—typically executed on Serverless and Function
as a service (FaaS) cloud-computing services—incur signif-
icant overheads when the runtime relies solely on Just-In-
Time (JIT) compilation. Indeed, JIT compilation enables high
steady-state performance but introduces runtime and mem-
ory overheads, which affect program startup [2]. For this rea-
son, recent research is increasingly focusing on the optimiza-
tion of startup performance, cloud lambda functions [52],
and interpreters [6]. Improving startup performance of short-
running applications is crucial to save computational re-
sources, maximizing the throughput of cloud services.

In the Serverless and FaaS computing models [16], the ser-
vice needs to balance between keeping programs in memory
and starting programs too often. When a certain machine
receives a request for the first time, the service needs to pre-
pare the execution environment with the required memory,
runtime, and configuration to run the user-provided function
on that machine. The code of the function can be either fully
downloaded in this setup step or incrementally downloaded
using a Network File System (NFS), upon the first function
execution. Since the environment is already initialized and
the function code is already present in the RAM, subsequent
function invocations are significantly faster than the first

https://orcid.org/0000-0002-7219-9077
https://orcid.org/0000-0003-0260-2729
https://orcid.org/0000-0002-6467-0113
https://orcid.org/0000-0002-2477-2182
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Basso et al.

one. However, to avoid wasting resources, the service typi-
cally retains the execution environment only for a certain
period of time [4]. After that, the service frees the resources
by removing the idle program, and a new function request
may later start the initialization from scratch, incurring in
additional overhead. The service would like to remove the
idle programs from main memory as soon as possible, but
without breaking the service-level agreement that a certain
percentile of responses takes less than a certain number of
milliseconds. Improving the program startup time allows the
service to remove idle programs more often.
While related work on optimizing start-up performance

focuses mostly on the optimization of the Serverless plat-
forms [52], a few techniques try to perform startup opti-
mizations at the application level. For instance, GraalVM
Native Image [55] allows creating a binary file from a Java
application that can run without instantiating a Java Vir-
tual Machine (JVM), pre-initializing at build time the Java
environment. Binaries produced by GraalVM Native Image
contain not only the code to be executed, but also a snapshot
of the pre-initialized heap memory, consisting of Java ob-
jects and arrays. While embedding this snapshot reduces the
runtime-initialization time, the larger binary size increases
the pressure on the (Network) File System. Hence, evenwhen
employing these techniques, startup performance is not op-
timal.

This paper aims at mitigating startup-performance degra-
dation for the first execution of binaries that embed a snap-
shot of the heapmemory.We propose a profile-guidedmethod-
ology to reorder the code and the heap-snapshot sections
of the binary (Sec. 3). We generate an instrumented binary
of the program to collect a profile, containing a trace of
method invocations (which reflects the order in which they
were first executed) and a trace of accesses to objects in the
heap snapshot (which reflects the order in which they were
accessed). Then, using these profiles, we create a second,
profile-driven optimized binary. We use the traces to place
the used methods and objects into contiguous areas of the
binary. While the invocation traces can easily be mapped
to the methods in the optimized binary (by matching their
signatures), mapping the object-access traces to the heap
snapshot is more challenging. A heap object does not have a
unique name or identifier, and the heap-snapshot contents
are not guaranteed to be the same across image builds (due
to non-determinism in running class initializers and because
profiles themselves influence the contents of the binary), so
the object-access trace needs to be mapped to respective
objects using other distinguishing factors. We are not aware
of other work dealing with the ordering of heap snapshots
stored in binary files, mapping object identities across com-
pilations that differ due to divergence between the regular
and the profile-driven image.

In addition, we propose multiple ordering strategies aim-
ing at reducing page faults related to accesses to the binary.

We first describe two code-ordering strategies, which im-
prove runtime performance and locality in the code section
of the binary (Sec. 4). One strategy is based on ordering com-
pilation units, while the other relies on method ordering.
Then, we propose three heap-ordering strategies to reduce
page faults related to accessing objects in the heap snapshot,
as well as a novel way of mapping profiles against objects in
the heap (Sec. 5). One strategy relies on incremental identi-
fiers, another on structural hashing and the third encodes
paths in the heap object graph. We also propose a profiling
methodology to collect the profile (Sec. 6).
Finally, we evaluate our code- and heap-ordering strate-

gies on the “Are We Fast Yet?” benchmark suite [32] (Sec. 7),
showing that they are effective in both reducing page faults
and improving runtime performance when employing both
a Solid-state Drive (SSD) and a NFS, leading to an average
page-fault reduction factor of 1.65× (SSD) and 1.68× (NFS)
and an average execution-time speedup of 1.59× and 1.58×
(NFS).

We complement the paper by illustrating the required
background (Sec. 2), discussing related work (Sec. 8), and
giving our concluding remarks (Sec. 9).

2 Background
In the following text, we give preliminary information on
ahead-of-time compilation (Sec. 2.1), heap snapshotting (Sec. 2.2),
and profile-guided optimizations (Sec. 2.3).

2.1 Ahead-of-time (AOT) Compilation
To reduce the startup time of Java workloads, GraalVM Na-
tive Image [38, 55] (henceforth just Native Image for short)
allows compiling a JVM application and its dependencies
into a single binary file that can be executed without instan-
tiating a JVM. To do so, Native Image relies on Graal [12],
an optimizing compiler that performs inlining [45], escape-
analysis [49], and various other optimizations [25, 26]. Graal
performs transformations and optimizations on a portion of
code provided as input, called compilation unit (CU). A CU
consists of a root method (i.e., the method from which the
compilation started), and all the methods that were inlined
into that root method. CUs are stored in the .text section
of the binary. After the compilation, each CU typically in-
cludes multiple inlined methods. By default, CUs in the .text
section of a Native-Image binary are ordered alphabetically.

Notably, the CUs in one binary may not correspond to the
CUs in another binary of the same compiled application. The
contents of a Native-Image binary are sensitive to the code
that is on its classpath. Indeed, Native Image uses a form of
points-to analysis to decide which code from the classpath
is reachable [21, 21, 47, 54, 55], and to improve compilation
speed, it employs saturation to mark virtual calls as having
all possible targets after the set of targets exceeds a specific
threshold [54]. The points-to analysis is conservative and

Improving Native-Image Startup Performance Conference’17, July 2017, Washington, DC, USA

always includes more code than what is actually reachable
or executed at runtime. The inclusion of seemingly unrelated
code into the binary may thus significantly impact inlining
decisions, hence producing a completely different grouping
of Java methods into compilation units. Inlining decisions are
furthermore code-size driven, so instrumentation code may
make the inliner behave differently between compilations of
the instrumented and the regular image.

2.2 Heap Snapshotting
A defining feature of Native Image is that, to further speed
up the startup, the produced binaries contain a snapshot of
the Java heap memory. The snapshot is obtained after exe-
cuting the static initializers of the classes that are deemed to
be reachable in the startup process of the VM (when static
initializers have no observable side-effects). The aforemen-
tioned points-to analysis determines which classes and static
fields are reachable. To select the objects to be included in the
heap snapshot, Native Image traverses the object graph in a
well-defined order, starting from the required static fields of
the reachable classes, as well as constants in the code section.
For this reason, small changes in the program or its entry
points may lead to significant changes in the heap snapshot.
Moreover, objects in the heap snapshot typically differ across
Native-Image compilations, particularly when the second
compilation consumes profiles to guide its optimizations.
For example, due to different inlining decisions that affect
Partial Escape Analysis (PEA) [49], some objects could be
stack-allocated in one binary but not in another, or the ac-
cesses to their fields could be constant-folded, eliminating
the need to store the respective objects in the heap snapshot.
The heap snapshot is stored in the .svm_heap section of

the binary, and is memory-mapped when the program starts,
hence each page is lazily copied tomemory on the first access.
By default, objects are ordered according to the order of the
CUs in the .text section of the binary—objects reachable
from a CU𝐴 are stored before objects reachable from another
CU 𝐵 that is stored after𝐴 in the .text section. We note that
the compilation is in some cases non-deterministic, and one
reason is that the class initializers may be executed in parallel
during the build process.

2.3 Profile-guided Optimizations (PGO)
Native Image can use execution profiles to generate more
efficient code, and this is yet another reason for inconsisten-
cies between regular and profile-driven builds. As is common
for AOT compilers such as LLVM [30] and GCC [15], Na-
tive Image can create an instrumented binary with code that
gathers profiles, and writes them to a file upon program
exit. Native Image can then use the profiles to generate an
optimized image. Native-Image profiles currently contain
branch frequencies, virtual-call receiver types, and method
call counts. Instrumented and optimized images differ in

their CUs and objects in the heap snapshot, which is primar-
ily caused by different inlining decisions that enable different
sets of optimizations.

3 Profile-guided Binary Reordering
Our goal is to improve the existing profiles collected by in-
strumented Native-Image binaries, and use the augmented
profiles to generate an optimized binary with improved
startup performance. Fig. 1 shows the steps required by our
methodology and how they are integrated into Native Im-
age. The figure reports both the steps required to create the
instrumented binary in the profiling build (gray nodes with
dotted borders) and the steps required to create the opti-
mized image introduced by our methodology (blue nodes
with dashed borders). Steps required for both the profiling
and the optimized builds are depicted with green nodes with
dash-dot borders. White nodes with solid borders represent
existing steps of the Native-Image building process, while
white nodes with double borders represent outputs.

The regular Native-Image building process starts with the
iterative execution of a points-to analysis [21, 21, 47, 54, 55]
to run static initializers and create a snapshot of the heap
until a fixed point is reached. Then, Native Image compiles
the reachable methods, adding their code to the .text section
of the binary, and stores the heap snapshot in the .svm_heap

section of the binary. To produce instrumented binaries in
the profiling build, our methodology extends the regular
building process to 1) instrument the compiled methods to
collect method-execution and object-access traces, and 2) as-
sociate an identifier to each object instance to be stored in
the .svm_heap section of the binary (detailed later in Sec. 5).
The execution of the instrumented binary leads to the gen-
eration of traces that need to be further post-processed to
produce the actual code- and heap-ordering profiles.
In the optimizing build, our methodology exploits the

ordering profiles gathered upon the execution of the instru-
mented binary. We add a code-ordering step that takes the
code-ordering profiles as input (note that the dashed arrow
in the figure connects the code-ordering profiles to the code-
ordering step) and reorders the CUs before storing them
into the binary. Moreover, we add the same step present in
the profiling build to associate an identifier to each object
instance in the heap snapshot, and a heap ordering step that
takes the heap-ordering profiles as input, before writing the
heap snapshot. The heap-ordering step attempts to match
the semantically same objects in the heap snapshot and in
the profiles by exploiting their identifiers and hence reorders
the former according to the latter.

In this build, identifiers are not stored in the binary.

4 Code Ordering
In our approach, we extend the instrumentation of the pro-
gram to collect the trace ofmethod invocations, which records

Conference’17, July 2017, Washington, DC, USA Basso et al.

Points-to
Analysis

Run Static
Initializations

Heap Snap-
shotting

Object-
Identifier
Generation

Heap Ordering
Image-Heap
Writing

Ahead-of-Time
Compilation Instrumentation Code Ordering

Binary

.text
section

.svm_heap
section

Image Build
Time

Profiled
Execution

Code-Ordering
Profiles

Heap-Ordering
Profiles

Post-
Processing
Analyses

Execution
and
Post-

processing
Time

Figure 1. Integration of the proposed binary-reordering methodology into the Native-Image building process.

the order in which the methods executed. The CUs in the
.text section of the optimized binary are then reordered
using the trace, with the goal of ordering and minimizing
the total set of pages with the code from the trace, and thus
to reduce the number of page faults.
We order CUs with the aim of achieving the following

optimality property as often as possible:
Property 1 (Optimal ordering). If the first invocation of

method 𝐴 appears in the trace before the first invocation of
method 𝐵, then the first occurrence of the method𝐴 precedes
the first occurrence of the method 𝐵 in the layout of the
optimized binary.

In general, for any method-invocation trace of a program
and any choice of CUs, it is not possible to choose a CU
ordering that satisfies Property 1. The reason for this is that
the same method from the trace may have been invoked on
multiple code paths. Consider the following example:

a() {
if (...) b();
if (...) c();

}

b() {
if (...) c();

}

c() {
...

}

Next, consider the following choice of compilation units:
the call from a to b is inlined into a, the code from b to c

is also inlined into a, but the call from a to c is not inlined
(i.e., method c remains a separate CU). Finally, consider the
method-invocation trace a, b, c. It is not possible to decide
whether the inlined or the non-inlined invocation of c oc-
curred in the trace. Hence, when laying out the CUs in the
binary, it is not clear whether it is optimal to place the CU
with the root c immediately after the CU with the root a.

We therefore implement and evaluate two code-ordering
heuristics: one that orders the CUs based on the invocation
orders of the root methods, and another that orders the CUs
based on the invocation orders of all the methods.

4.1 Compilation-Unit-based Ordering
In this strategy (called cu ordering), we trace all the CU exe-
cutions by instrumenting the CU entry points. In particular,
the instrumentation code records the signature of the root
method of each CU. To obtain the ordering profiles, we re-
move the duplicated elements in the trace maintaining the
original (execution) order.
Consider the previous example and the execution of the

following code a(); c(); in the case where the conditions of
all the if statements evaluate to true. This strategy produces
the CU-invocation trace a, c, c (since c is not inlined into
a), leading to the ordering a, c.

4.2 Method-based Ordering
In this strategy (called method ordering), we trace all the
method executions by instrumenting themethod entry points.
The instrumentation code records the signature of each
method. To obtain the ordering profiles, we remove the
duplicated elements in the trace maintaining the original
(execution) order. In the same example presented in Sec. 4.1,
this strategy would produce the method-invocation trace a,

b, c, c, c, leading to the ordering a, b, c.

5 Heap-Snapshot Ordering
In this section, we propose and describe three heap-ordering
strategies, aiming at reducing page faults related to the
.svm_heap section of the binary. The goal of each strategy is
to compute 64-bit object identities (IDs) to match the object-
access trace entries with the heap-snapshot objects of the
optimized binary as accurately as possible. The first strat-
egy does this by assigning sequential IDs to objects in the
order in which they are encountered during heap snapshot-
ting (Sec. 5.1); the second strategy identifies objects through
hashes, computing them taking into account the type and

Improving Native-Image Startup Performance Conference’17, July 2017, Washington, DC, USA

Algorithm 1: Incremental IDs Function
Function incrementalId(𝑒𝑛𝑡𝑖𝑡𝑦):
computes the 64-bit ID for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦
using incremental IDs
Input:
𝑒𝑛𝑡𝑖𝑡𝑦, a wrapper around the value for which the algorithm
computes the ID
Output:
the 64-bit ID for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦

1 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑁𝑢𝑙𝑙 () then
2 return 0
3 𝑡𝑦𝑝𝑒 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑡𝑦𝑝𝑒 ()
4 𝑡𝑦𝑝𝑒𝐼𝑑 ← 𝑡𝑦𝑝𝑒.𝑖𝑑 ()
5 𝑖𝑑 ← 𝑔𝑒𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐹𝑜𝑟 (𝑡𝑦𝑝𝑒𝐼𝑑).𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐴𝑛𝑑𝐺𝑒𝑡 ()
6 return (𝑡𝑦𝑝𝑒𝐼𝑑 << 32) | 𝑖𝑑

the fields of the object, as well as its neighbours in the ob-
ject graph (Sec. 5.2); the third strategy assigns IDs to objects
based on the path to the heap object (Sec. 5.3).

5.1 Incremental ID
Here, we propose a strategy that assigns incremental IDs to
object instances in object encounter order when traversing
the heap object graph to detect objects to be included in the
heap snapshot. This strategy called incremental ID, has the
advantage of being simple, but it becomes inaccurate for
complex workloads whose code and heap snapshots differ
between regular, profiling, and optimized (profile-driven)
builds.

Algorithm 1 shows the pseudocode of the proposed strat-
egy. All algorithms shown in the paper take as input an
𝑒𝑛𝑡𝑖𝑡𝑦, which represents a wrapper around a 𝑣𝑎𝑙𝑢𝑒 , which
can be an object reference, an array reference, or a primi-
tive value. The purpose of 𝑒𝑛𝑡𝑖𝑡𝑦 is storing and inspecting
metadata of the wrapped 𝑣𝑎𝑙𝑢𝑒 . We anticipate that primi-
tive value wrappers will only be encountered in function
encodeToBytes (Algorithm 2, explained later), because IDs
need to be computed only for objects and arrays. We gen-
erate 64-bit IDs, where the most-significant 32 bits store a
unique ID associated with the type (lines 3–4, 6) while the
least-significant 32 bits store an incremental ID associated to
the ID of the type of the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦 (lines 5–6).
That is, objects have incremental IDs within their type, not
globally. Doing so helps reduce inaccuracies due to differ-
ent object encounter orders among different compilations
because in this way the inaccuracies introduced by an object
affect only the ordering of the objects of the same type and
not the ordering of all the objects.

We note that types can be uniquely identified by their fully
qualified names even between compilations and hence are
easily associatedwith IDs. The helper function getCounterFor

(line 5) returns a counter object instance associated with the
provided type ID. If a type ID has no counter associated, the

Algorithm 2: Structural Hash Function
Function structuralHash(𝑒𝑛𝑡𝑖𝑡𝑦):
computes the structural hash for the value wrapped by
𝑒𝑛𝑡𝑖𝑡𝑦

Input:
𝑒𝑛𝑡𝑖𝑡𝑦, a wrapper around the value to be hashed
Output:
the 64-bit structural hash for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦

1 𝑏𝑦𝑡𝑒𝑠 ← 𝑒𝑛𝑐𝑜𝑑𝑒𝑇𝑜𝐵𝑦𝑡𝑒𝑠 (𝑒𝑛𝑡𝑖𝑡𝑦, 0)
2 return𝑚𝑢𝑟𝑚𝑢𝑟𝐻𝑎𝑠ℎ3(𝑏𝑦𝑡𝑒𝑠)

Function encodeToBytes(𝑒𝑛𝑡𝑖𝑡𝑦, 𝑑𝑒𝑝𝑡ℎ):
encodes the value wrapped by the provided 𝑒𝑛𝑡𝑖𝑡𝑦 into a
byte buffer
Input:
𝑒𝑛𝑡𝑖𝑡𝑦, a wrapper around the value to be encoded
𝑑𝑒𝑝𝑡ℎ, the current recursion depth
Output:
a byte buffer that encodes the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦

1 𝑏𝑦𝑡𝑒𝑠 ← 𝑛𝑒𝑤𝐵𝑦𝑡𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟 ()
2 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑁𝑢𝑙𝑙 () then
3 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (0)
4 return 𝑏𝑦𝑡𝑒𝑠

5 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑖𝑡𝑦.𝑡𝑦𝑝𝑒 ().𝑓 𝑢𝑙𝑙𝑦𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 ())
6 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑐𝑢𝑟𝑠𝑒 ← 𝑑𝑒𝑝𝑡ℎ < 𝑀𝐴𝑋_𝐷𝐸𝑃𝑇𝐻
7 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 () or 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑆𝑡𝑟𝑖𝑛𝑔() then
8 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑖𝑡𝑦.𝑣𝑎𝑙𝑢𝑒 ())
9 else if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑂𝑏 𝑗𝑒𝑐𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 () then
10 𝑓 𝑖𝑒𝑙𝑑𝑠 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑓 𝑖𝑒𝑙𝑑𝑠 ()
11 for 𝑘 ← 1 to 𝑓 𝑖𝑒𝑙𝑑𝑠.𝑙𝑒𝑛𝑔𝑡ℎ() do
12 𝑓 𝑖𝑒𝑙𝑑 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑔𝑒𝑡𝐹𝑖𝑒𝑙𝑑𝑊𝑟𝑎𝑝𝑝𝑒𝑟 (𝑘)
13 if 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑐𝑢𝑟𝑠𝑒 or 𝑓 𝑖𝑒𝑙𝑑.𝑖𝑠𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 () or

𝑓 𝑖𝑒𝑙𝑑.𝑖𝑠𝑆𝑡𝑟𝑖𝑛𝑔() then
14 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 𝑖𝑒𝑙𝑑.𝑡𝑦𝑝𝑒 ().𝑓 𝑢𝑙𝑙𝑦𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 ())
15 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑐𝑜𝑑𝑒𝑇𝑜𝐵𝑦𝑡𝑒𝑠 (𝑓 𝑖𝑒𝑙𝑑, 𝑑𝑒𝑝𝑡ℎ +

1))

16 else if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝐴𝑟𝑟𝑎𝑦 () then
17 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ()
18 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑓 𝑢𝑙𝑙𝑦𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 ())
19 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑖𝑡𝑦.𝑙𝑒𝑛𝑔𝑡ℎ())
20 if 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑐𝑢𝑟𝑠𝑒 or 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑖𝑠𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 () or

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑖𝑠𝑆𝑡𝑟𝑖𝑛𝑔() then
21 for 𝑘 ← 1 to 𝑒𝑛𝑡𝑖𝑡𝑦.𝑙𝑒𝑛𝑔𝑡ℎ() do
22 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑘)
23 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑊𝑟𝑎𝑝𝑝𝑒𝑟 (𝑘)
24 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑐𝑜𝑑𝑒𝑇𝑜𝐵𝑦𝑡𝑒𝑠 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑑𝑒𝑝𝑡ℎ+

1))

25 return 𝑏𝑦𝑡𝑒𝑠

function creates a new counter with an initial value of zero
and associates it with the type ID.

Conference’17, July 2017, Washington, DC, USA Basso et al.

5.2 Structural Hash
In this section, we propose a strategy that computes ob-
ject IDs leveraging a structural hash function, i.e., a func-
tion that analyzes the object structure and hashes all its
fields. We call this strategy structural hash. We note that
we implement our own hashing function and we do not re-
sort to the Java method System.identityHashCode(Object)

(i.e., the default hash function implementation invoked by
Object.hashCode()) because the hash computed on the se-
mantically same object across compilations most likely dif-
fers, invalidating object mappings. Indeed, implementations
of System.identityHashCode(Object), which are platform-
specific, often rely on either random values or the memory
address at which the object was allocated. Similarly, we do
not use as hash the one computed by the hashCode method
because this method is not guaranteed to be declared for
all types or implemented efficiently, and can contain side-
effects.

Our approach, shown in Algorithm 2, exploits metadata to
hash object instances of arbitrary types. Function structuralHash

first encodes the wrapped value in a byte buffer by exploit-
ing the recursive encodeToBytes function (line 1, described
later) and then leverages the widely used hash functionMur-
murHash3 [1] (line 2), i.e., a fast hash function that produces
well-distributed hash values, useful “in every scenario when
we need to find two or more matching byte arrays” [1]. En-
coding the wrapped value to bytes allows computing the
hash on the entire data and avoids computing and merging
partial hashes.
The recursive encodeToBytes function encodes an object

with all its fields (it is recursively invoked when the field
value is an object reference) and consists of four cases, ex-
plained below. In addition to the wrapper around the value,
the function takes as input the current recursion depth (start-
ing from 0) and produces a byte buffer as output. First, the
algorithm initializes an empty byte buffer to store the bytes
to be returned (line 1). If the wrapped value is null (line 2),
the algorithm stores 0 in the buffer and returns it (lines 3–4).
If the wrapped value is not null, the algorithm stores (in
the buffer) the bytes representing the fully qualified name of
the type of the value and checks whether the current depth
exceeds a certain threshold MAX_DEPTH (lines 5–6). The result-
ing value of this check, stored in the shouldRecurse variable,
will be later used to determine whether the algorithm should
recurse or not when encountering a reference to an object
instance or array. This is required to avoid infinite recursion
since the object graph may contain cycles. The higher the
value of MAX_DEPTH, the higher the computation time, the
lower the collisions of the hash function but also the lower
the probability of matching objects across compilations due
to the inclusion of divergences between the heap snapshots
in the hash.

Then, the algorithm computes the encoding based on the
value type. If the value is of a primitive type or String, we
simply append the primitive value or the bytes representing
the string to the buffer, respectively (lines 7–8). If the value
is an object instance, we iterate over the object fields (in
source-code definition order) and we read the value stored
in each field as an entity (lines 9–12). For each field, the
algorithm checks whether it can recurse on the field entity
or whether the dynamic type of the field value is a primitive
type or String (line 13). If the check succeeds, we append
the fully qualified name of the field’s static type to the byte
buffer (line 14), as well as the bytes resulting from a recursive
call that takes the field entity and the depth (incremented by
1) as parameters (line 15).

Finally, if the value is an array, we first append the fully
qualified name of the array element type and the array length
to the byte buffer (lines 16–19). Then, if the current depth
allows recursion or the array element type is a primitive type
or String, we iterate over all the wrapped array elements,
appending for each of them the corresponding index within
the array and the bytes resulting from the recursive encoding
on the array element (lines 20–24). The algorithm terminates
by returning the byte buffer (line 25).

5.3 Heap Path
In this section, we propose a strategy named heap path. This
approach uses as object ID a hash computed based on 1) the
first path in the heap object graph to that object found by
Native Image, i.e., the path that led to the inclusion of that
object in the heap snapshot, and 2) the heap-inclusion reason
associated with the root of that path. The heap-inclusion
reason is a string representing why Native Image has deemed
the root to be such. The heap-inclusion reason associated
with a root object may be the signature of a static field (for
an object stored in a static field of a reachable class), the
signature of a method (for an object that is referenced by a
constant pointer embedded in a method), “InternedString”
(for a Java interned string [39]), “DataSection” (for an object
stored in the data section of the binary), or “Resource” (for
an object representing a resource). The advantage of this
strategy is that heap paths are less sensitive to divergences
between compilations than incremental IDs (as shown later
in Sec. 7.2). The disadvantage is that the same object may be
reachable from multiple paths. Our strategy considers only
the single path that led to the inclusion of that object in the
heap snapshot at image build time, which may be different
across compilations.

Algorithm 3 reports the pseudocode of the iterative heap-
path hash function. The value wrapped in the input 𝑒𝑛𝑡𝑖𝑡𝑦
(for which the hash has to be computed), is the last objec-
t/array in the path that needs to be written in the .svm_heap

section of the binary. Similarly to the structural hash strat-
egy, this function returns a 64-bit hash computed via Mur-
murHash3.

Improving Native-Image Startup Performance Conference’17, July 2017, Washington, DC, USA

Algorithm 3: Heap Path Hash Function
Function heapPathHash(𝑒𝑛𝑡𝑖𝑡𝑦):
computes the 64-bit hash for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦
based on heap paths
Input:
𝑒𝑛𝑡𝑖𝑡𝑦, a wrapper around the value to be hashed
Output:
the 64-bit hash for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦

1 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑁𝑢𝑙𝑙 () then
2 return 0
3 𝑏𝑦𝑡𝑒𝑠 ← 𝑛𝑒𝑤𝐵𝑦𝑡𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟 ()
4 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑅𝑜𝑜𝑡 () and

𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑒𝑎𝑠𝑜𝑛() == “𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔” then
5 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑖𝑡𝑦.𝑣𝑎𝑙𝑢𝑒 ())
6 else
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑒𝑛𝑡𝑖𝑡𝑦

8 while true do
9 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 ().𝑓 𝑢𝑙𝑙𝑦𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 ())

10 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑖𝑠𝑅𝑜𝑜𝑡 () then
11 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑒𝑎𝑠𝑜𝑛())
12 break

13 else
14 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑔𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠 ().𝑓 𝑖𝑟𝑠𝑡 ()
15 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑖𝑠𝐴𝑟𝑟𝑎𝑦 () then
16 𝑖𝑛𝑑𝑒𝑥 ←

𝑔𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
17 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑛𝑑𝑒𝑥)
18 else
19 𝑓 𝑖𝑒𝑙𝑑 ←

𝑔𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑𝐹𝑖𝑒𝑙𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
20 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 𝑖𝑒𝑙𝑑.𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 ())
21 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑝𝑎𝑟𝑒𝑛𝑡

22 return𝑚𝑢𝑟𝑚𝑢𝑟𝐻𝑎𝑠ℎ3(𝑏𝑦𝑡𝑒𝑠)

The algorithm first checks whether the wrapped value is
null, returning zero in such case (lines 1 and 2). If the value
is not null, the algorithm allocates a byte buffer that will be
later used by MurmurHash3 (line 3) and checks whether the
value is a root in the heap object graph and whether this root
was included in the heap object graph because it represents
an interned string (line 4). If the value is an interned string,
we do not hash the heap path (that would be the same for
all the interned strings) but instead, we append the bytes
representing the string to the buffer (line 5). If the value is
not an interned string, we iteratively traverse the first path
from the object to the root (lines 7–21). For each object in
the path, we append the fully qualified name of the type of
the object to the buffer (line 9).

If the value is a root, we append the heap inclusion reason
as a string and we break the loop (lines 10–12). If the value
is not a root, we obtain the parent object or array in the
path (line 14), If the parent is an array (line 15), we obtain

the array index where the current wrapped value is stored
(line 16) and we append it to the buffer (line 17). Otherwise,
the parent is an object instance. Hence, we obtain the field
where the current wrapped value is stored (line 19) and we
append the field descriptor to the buffer (line 20). We then
iterate over the parent (line 21).
Finally, after processing all objects in the path, we apply

MurmurHash3 and we return the hash (line 22).

6 Profiling Methodology
In this section, we detail our profiling methodology (Sec. 6.1)
and post-processing analysis (Sec. 6.2).

6.1 Tracing Profiler
Our approach makes use of a tracing profiler, i.e., a profiler
that produces a (per-thread) sequence of executed events.
The profiler performs the instrumentation at the level of
the intermediate representation (IR) [11, 12] used by the
compiler during its optimization passes. We resort to this
technique because, for our goals, it would be impractical
to perform the instrumentation at other levels, such as ma-
chine code or bytecode. Instrumentation at machine-code
level would lack additional metadata (obtained upon compi-
lation) necessary to identify 1) all methods corresponding to
machine-code instructions (needed to perform code order-
ing) and 2) machine-code instructions corresponding to Java
object field and array accesses (needed to perform heap or-
dering). Instead, bytecode-level instrumentation would have
severe drawbacks, as it would 1) disrupt the optimizations
normally done by the compiler and 2) overprofile Java field
and array accesses, leading to highly inaccurate ordering
profiles [7].
In particular, our profiling methodology leverages an ac-

curate IR-level path-profiling technique proposed by related
work [7]. Using this technique, we accurately track executed
events, lowering perturbation on compiler optimizations and
increasing the accuracy of the profiles. Moreover, our tracing
profiler exploits the path-cutting optimization to the stan-
dard path-profiling algorithm proposed by the same related
work [7], which is fundamental to avoid an exponentially
large number of paths and enables the practical usage of path
profiling in a modern optimizing compiler. We implement
the profiler within the Graal compiler.

Upon instrumentation, each application path is associated
with a unique ID. We modify the technique proposed by
related work, which performs event counting, to perform
event tracing instead, i.e., we do not count path executions
but we store the IDs associated to the executed paths into
thread-local buffers, producing one trace file per thread. By
iterating over the ordered path IDs in a trace file, one can ob-
tain the entire sequence of events executed by a thread (such
as the ordered object accesses performed by a thread). In-
strumentation code is implemented as handcrafted IR nodes

Conference’17, July 2017, Washington, DC, USA Basso et al.

with some specific calls to low-level functions to obtain and
dump thread-local buffers. These functions are implemented
as methods with no heap accesses, allowing the collection of
events occurring even during the initialization of the execu-
tion environment, when code cannot be interrupted and the
heap memory has not been initialized yet. This is crucial to
optimize not only the user code but also the Native-Image
internals employed in the very early stages of the execution.
To reduce the profiling overhead, we store only the IDs

of the executed paths and the identifiers of the accessed
objects in thread-local buffers. Upon instrumentation, we
associate information that is statically available at compile
time (and hence remains constant among executions of the
same path) to paths. For example, we associate to a path
all IR instructions contained in the path, and for each IR
instruction we store its corresponding source method. We
dump the thread-local buffers when full, immediately before
storing a path that would not fit into the buffer, and upon
thread termination.

To perform code ordering, we trace two different events de-
pending on the proposed technique. For cu ordering, we trace
cu entry events, while for method ordering, we trace method
entry events. Finally, to perform heap-snapshot ordering, we
trace all the identifiers of the accessed Java objects upon
every field or array access. Since object identifiers repre-
sent runtime information, they are stored in the thread-local
buffers together with the executed path IDs. When parsing a
trace file, each path ID (associated with a fixed sequence of
events) determines how many object identifiers are stored
after the path ID.

6.2 Post-Processing Analyses
To parse the traces and obtain ordering profiles, we imple-
ment a Java post-processing framework that implements
ordering analyses. Each ordering analysis produces as out-
put a CSV file that is used by Native Image. Ordering analyses
are implemented as classes that exploit the visitor pattern
and accept one event after the other in execution order. The
framework reads the trace files, decodes the path IDs (i.e.,
obtains the sequence of events associated with the path ID
and if present reads hashes stored after the path ID), and
dispatches all the events occurring in the executed paths to
the analyses. Each analysis internally keeps an ordered set
that stores either the CUs, methods, or hashes in encounter
order (and hence, in execution order). After the analyses
have consumed all the executed paths/events, the ordered
set of each analysis is dumped into a CSV file.

7 Evaluation
In this section, we first present our experimental setup (Sec. 7.1),
then we discuss the page-fault reductions (Sec. 7.2) and
execution-time speedups (Sec. 7.3) achieved by the proposed
ordering strategies.

7.1 Evaluation Settings
We run our experiments on a machine equipped with a 16-
core Intel Xeon Gold 6326 (2.90 GHz) and 256 GB of RAM run-
ning Linux Ubuntu (kernel v. 5.15.0-25-generic). Frequency
scaling, turbo boost, hyper-threading, and address space
randomization are disabled, CPU governor is set to “perfor-
mance”. We conduct our experiments on GraalVM Commu-
nity Edition, based on OpenJDK 21, using the Graal compiler.
We modify both Graal and the Native Image to implement
our strategies. We perform our experiments on “Are We Fast
Yet?” [32], a benchmark suite consisting of 14 benchmarks
specifically designed to compare language implementations
and optimize their compilers. We build statically linked exe-
cutables as recommended [29]. Since our goal is optimizing
and evaluating the first binary execution, where data is not
already present in RAM and needs to be fetched, we drop
clean caches, as well as reclaimable slab objects such as den-
tries and inodes between benchmark iterations [50].

We execute our experiments employing both an SSD and
a NFS. This allows us to consider both systems where the
executable is fully downloaded before the first execution and
systems that employ NFS. When using the SSD, the page size
is 4 KB. The LinuxNFS client runs NFS v. 4.2 and is configured
with the rsize and wsize parameters [33] equal to 1 MB, i.e.,
1 MB is the maximum number of bytes in each network
read/write request. We note that 1 MB is the maximum value
supported by the Linux NFS client, allowing one to limit the
number of network requests (and hence context switches),
thus minimizing the performance impact of page faults. As
a consequence, the reduction of page fault and execution-
time speedup reported in the paper can be seen as a lower
bound—they may be larger in systems with lower rsize

and wsize values. We do not employ AWS Lambda [3] or
other cloud computing services to perform our evaluation
because these services do not allow collecting performance
numbers by adequately customizing the evaluation settings.
For example, they do not allow dropping caches between
workload executions.

For each strategy (including the unmodified baseline), we
build 10 native images for each benchmark. For each of these
builds, we run 10 iterations to measure end-to-end execu-
tion time and another 10 iterations to measure page faults.
End-to-end execution time measurements, often used by
Serverless platforms as performance metrics, are obtained
using perf [27]. To determine page-fault reductions related
to the .text and .svm_heap sections, we trace page faults
using perf and extract only the page faults directed to the
offsets of the binaries belonging to these sections. In both
cases, we compute the average of all the measurements.
All the figures shown in this section report factors com-

puted as𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 , where𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 refers to the
average measurement obtained without using our strategies
and𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 refers to the average measurement obtained

Improving Native-Image Startup Performance Conference’17, July 2017, Washington, DC, USA

Bounce CD

DeltaBlue
Havlak

Json List

Mandelbrot
NBody

Permute
Queens

Richards
Sieve

Storage
Towers

geomean
1

1.2

1.4

1.6

1.8

2

Pa
ge

-Fa
ul

t R
ed

uc
tio

n
Fa

ct
or

 1
.6

1

 1
.5

2 1
.6

2

 1
.6

3

 1
.4

7

 1
.6

2

 1
.6

6

 1
.5

1

 1
.6

2

 1
.5

6

 1
.5

3 1
.5

8

 1
.6

1 1
.6

6

 1
.5

8

 1
.4

7

 1
.6

2

 1
.6

2

 1
.6

3

 1
.4

7 1
.5

5

 1
.5

1

 1
.4

1

 1
.5

5

 1
.4

3

 1
.5

3

 1
.5

5

 1
.4

7 1
.5

1

 1
.5

2

 1
.3

1

 1
.2

2 1
.2

6 1
.3

0

 1
.3

0

 1
.2

9

 1
.2

9 1
.3

3

 1
.3

0

 1
.3

3

 1
.3

4

 1
.2

9

 1
.3

3

 1
.3

0

 1
.3

0

 1
.4

1

 1
.4

1

 1
.3

5 1
.4

0

 1
.3

8 1
.4

1

 1
.4

1

 1
.4

3

 1
.3

8 1
.4

3

 1
.4

1

 1
.3

9 1
.4

4

 1
.3

6

 1
.4

0

 1
.4

3

 1
.3

5 1
.4

3

 1
.4

0

 1
.3

9

 1
.4

0

 1
.4

1

 1
.4

1

 1
.3

8 1
.4

4

 1
.4

6

 1
.3

8 1
.4

8

 1
.4

3

 1
.4

1

 1
.6

8

 1
.4

7

 1
.6

2

 1
.7

7

 1
.6

2

 1
.6

5

 1
.6

6

 1
.6

0 1
.6

9

 1
.7

0

 1
.6

2

 1
.6

5

 1
.6

8

 1
.6

8

 1
.6

5

cu method incremental id structural hash heap path cu+heap path

(a) SSD

Bounce CD

DeltaBlue
Havlak

Json List

Mandelbrot
NBody

Permute
Queens

Richards
Sieve

Storage
Towers

geomean
1

1.2

1.4

1.6

1.8

2

Pa
ge

-Fa
ul

t R
ed

uc
tio

n
Fa

ct
or

 1
.7

1

 1
.5

7 1
.6

5

 1
.6

7

 1
.5

8

 1
.7

1

 1
.7

0

 1
.6

0 1
.6

4 1
.7

0

 1
.6

8

 1
.6

6

 1
.6

9

 1
.6

2 1
.6

6

 1
.6

1 1
.6

9

 1
.6

6 1
.6

9

 1
.6

1

 1
.7

1

 1
.6

3

 1
.5

7 1
.6

1

 1
.5

4

 1
.7

0

 1
.6

3

 1
.6

6

 1
.5

2

 1
.6

3

 1
.2

8

 1
.1

8 1
.2

9

 1
.2

8 1
.3

3

 1
.3

1

 1
.2

7

 1
.3

4

 1
.3

2

 1
.3

3

 1
.3

2

 1
.3

3

 1
.3

3

 1
.3

1

 1
.3

0 1
.4

0

 1
.3

4

 1
.3

6 1
.3

1

 1
.4

1

 1
.6

0

 1
.4

1

 1
.4

5

 1
.4

3

 1
.5

1

 1
.4

2

 1
.4

5

 1
.4

4

 1
.3

7 1
.4

2

 1
.4

2

 1
.3

4 1
.4

6

 1
.3

7 1
.4

7

 1
.4

3

 1
.3

9

 1
.4

5

 1
.3

8 1
.4

2

 1
.4

5

 1
.4

2

 1
.4

6

 1
.4

4

 1
.4

2

 1
.7

0

 1
.4

8

 1
.6

7 1
.7

4

 1
.7

2 1
.7

5

 1
.6

6

 1
.6

4 1
.7

2

 1
.7

0

 1
.6

7 1
.7

2

 1
.7

0

 1
.6

7

 1
.6

8

cu method incremental id structural hash heap path cu+heap path

(b) NFS

Figure 2. Page fault reduction achieved by the proposed ordering strategies.

using one of our strategies (higher is better). The benchmarks
are reported on the 𝑥-axis of the plot, while the factors are
reported on the 𝑦-axis. After the benchmarks, we report the
geometric mean across all benchmarks. Above each bar, we
report the exact factor. The black error bars represent 95%
confidence intervals (CI) of the measurements.

For the structural hash strategy, we set MAX_DEPTH to 2, ex-
perimentally determined as a good trade-off between compu-
tational time, hash collision probability, and identity-matching
probability across compilations. For code-ordering strategies,
we report the page-fault reduction factors computed by con-
sidering only the page faults caused by the .text section
of the binary, while for heap ordering strategies, we report
the page-fault reduction factors computed by considering
only the page faults caused by the .svm_heap section of the
binary. To evaluate the combined benefits of the code- and
heap- ordering strategies, we report both the page fault re-
ductions and the execution-time speedups for a strategy
named cu+heap path. In this strategy, we order both code
and objects by combining the cu and heap path strategies,
i.e., the code- and heap-ordering strategies, respectively, that

yield to the highest reduction of page faults according to our
experiments.

7.2 Page-Fault Reduction
Fig. 2a and 2b report the page-fault reductions obtained by
the proposed ordering strategies.
Code-ordering strategies. Experimental results show that
the cu ordering andmethod ordering strategies are both effec-
tive in reducing page faults related to the .text section of
the binary for all the evaluated benchmarks. However, cu or-
dering outperformsmethod ordering, as on average it reduces
page faults by 1.58× on SSD and by 1.66× on NFS (while
method ordering leads to factors of 1.52× on SSD and 1.63×
on NFS). The maximum page fault reduction is achieved
by cu ordering on the Mandelbrot and Towers benchmarks
(1.66×, on SSD), and on the Bounce and List benchmarks
(1.71×, on NFS).
Heap-ordering strategies. As the figures show, the incre-
mental id, structural hash, and heap path ordering strategies
introduce no page-fault increase on any benchmark. While
the average reductions of page faults related to the .svm_heap
section of the binary is similar for structural hash and heap

Conference’17, July 2017, Washington, DC, USA Basso et al.

Bounce CD

DeltaBlue
Havlak

Json List

Mandelbrot
NBody

Permute
Queens

Richards
Sieve

Storage
Towers

geomean
0.8

1

1.2

1.4

1.6

1.8

2

Ex
ec

ut
io

n-
Ti

m
e

Sp
ee

du
p

Fa
ct

or

 1
.2

7 1
.3

6

 1
.2

6

 1
.0

0

 1
.2

1

 1
.2

4 1
.3

0

 1
.3

0

 1
.3

1

 1
.2

8

 1
.3

0

 1
.3

1

 1
.2

7

 1
.2

8

 1
.2

6

 1
.2

9

 1
.2

8

 1
.2

8

 1
.0

0

 1
.1

9 1
.2

6

 1
.3

0

 1
.2

9

 1
.3

1

 1
.2

7

 1
.2

9 1
.3

6

 1
.2

6

 1
.2

8

 1
.2

6

 1
.0

9

 1
.0

5

 1
.0

6

 0
.9

7 1
.0

7

 1
.0

5

 1
.1

0

 1
.0

9

 1
.0

9

 1
.0

9

 1
.0

9

 1
.1

2

 1
.0

8

 1
.0

7

 1
.0

7

 1
.1

0

 1
.0

9

 1
.1

1

 0
.9

8

 0
.9

8

 1
.1

0

 1
.1

2

 1
.1

1

 1
.1

2

 1
.1

2

 1
.1

3 1
.2

0

 1
.0

9

 1
.0

8

 1
.0

9

 1
.1

2

 1
.0

8

 1
.1

2

 0
.9

8 1
.0

9

 1
.1

1

 1
.1

2

 1
.1

4

 1
.1

2

 1
.1

3

 1
.1

5

 1
.1

3

 1
.0

9

 1
.1

3

 1
.1

1

 1
.7

2

 1
.4

8 1
.5

7

 1
.0

0

 1
.4

4

 1
.6

9 1
.7

5

 1
.6

9

 1
.7

3

 1
.7

4

 1
.5

3

 1
.7

5

 1
.6

7

 1
.7

0

 1
.5

9

cu method incremental id structural hash heap path cu+heap path

(a) SSD

Bounce CD

DeltaBlue
Havlak

Json List

Mandelbrot
NBody

Permute
Queens

Richards
Sieve

Storage
Towers

geomean
0.8

1

1.2

1.4

1.6

1.8

2

Ex
ec

ut
io

n-
Ti

m
e

Sp
ee

du
p

Fa
ct

or

 1
.3

3

 1
.3

2

 1
.2

8

 1
.0

1

 1
.2

6

 1
.2

8

 1
.3

0

 1
.3

0

 1
.2

5 1
.3

1

 1
.2

6

 1
.2

3

 1
.2

5

 1
.2

6

 1
.2

6 1
.3

6

 1
.3

0

 1
.2

7

 1
.0

2

 1
.2

5 1
.2

8

 1
.3

0

 1
.2

9

 1
.2

6 1
.3

3

 1
.2

4

 1
.2

2 1
.2

7

 1
.2

4

 1
.2

6

 1
.2

1

 1
.1

6

 1
.1

5

 1
.0

0

 1
.1

5

 1
.1

3

 1
.1

7

 1
.1

4

 1
.1

3 1
.1

4

 1
.1

4

 1
.1

3

 1
.1

2

 1
.1

2

 1
.1

3 1
.2

1

 1
.1

8

 1
.1

4

 1
.0

0

 1
.1

8

 1
.1

7

 1
.2

0

 1
.2

1

 1
.1

6 1
.2

2

 1
.1

5

 1
.1

3

 1
.1

3

 1
.1

2

 1
.1

6 1
.1

3

 1
.1

5

 1
.1

5

 1
.0

1

 1
.0

9

 1
.1

4

 1
.1

8

 1
.1

6

 1
.1

4 1
.2

0

 1
.1

2

 1
.1

1

 1
.1

1

 1
.1

4

 1
.1

3

 1
.7

6

 1
.5

6 1
.6

4

 1
.0

0

 1
.6

0 1
.6

8

 1
.6

8

 1
.6

3

 1
.6

1 1
.6

8

 1
.5

9

 1
.6

1

 1
.5

9

 1
.6

2

 1
.5

8

cu method incremental id structural hash heap path cu+heap path

(b) NFS

Figure 3. Execution-time speedup achieved by the proposed ordering strategies.

path (average of 1.40× and 1.41× on SSD, respectively, and of
1.42× for both strategies on NFS), incremental id is less effec-
tive (average of 1.30× on both SSD and NFS). This indicates
that, despite the segregation by type, one cannot rely on
the encounter order when traversing the heap object graph.
Instead, hashing the heap paths from the roots to the objects
included in the heap snapshot is more robust.
We note that the evaluated benchmarks access on aver-

age 4% of the objects stored in the .svm_heap section of the
binary and hence heap-ordering strategies need to be rather
precise. Indeed, the heap snapshot does not only contain the
user-allocated objects but also many String literals, Class
instances, metadata byte arrays, and maps that dominate the
size. The maximum page-fault reduction factor on SSD is
achieved by heap path on Storage (1.48×) while on NFS by
structural hash on List (1.60×).
Combining Code- and Heap-ordering. When used to-
gether, the cu and the heap path ordering strategies intro-
duce average page-fault reduction factors (related to both
the .text and .svm_heap sections of the binary) of 1.65× and
1.68× on SSD and NFS, respectively, indicating that code and
object reordering are synergistic.

7.3 Execution-Time Speedup
In this section, we report the execution-time speedups in-
troduced by the proposed ordering strategies. Fig. 3a and 3b
show the speedup achieved by the code- and heap-ordering
strategies separately, as well as their combined speedups, on
both SSD and NFS.

On SSD, both code-ordering strategies (method and cu) in-
troduce an average speedup of 1.26×, while the incremental
id, structural hash, and heap path ordering strategies intro-
duce speedups of 1.07×, 1.09×, and 1.11×, respectively. On
NFS, the strategies introduce an average speedup of 1.26× (cu
and method), 1.13× (incremental id and heap path) and 1.16×
(structural hash). Experimental results show that, on the eval-
uated benchmarks, code-ordering strategies achieve more
speedups than heap-ordering ones. When combined, the cu
and the heap path strategies introduce speedups of 1.59× on
SSD and 1.58× on NFS. While code-ordering strategies do
not introduce slowdowns in any benchmark, heap-ordering
strategies introduce minor slowdowns (0.97×–0.98×) on the
long-running benchmark Havlak, where steady-state perfor-
mance is more important than startup performance.

Improving Native-Image Startup Performance Conference’17, July 2017, Washington, DC, USA

8 Related Work
While our work focuses on the optimization of startup perfor-
mance by improving low-level metrics, related work tackles
startup performance improvements mostly by proposing
techniques at different abstract levels, focusing either on the
optimization of virtual machines, interpreter, and JIT compil-
ers (Sec. 8.1) or on the optimization of Serverless platforms
and functions (Sec. 8.2). Instead, existing function- (Sec. 8.3)
and heap-ordering (Sec. 8.4) approaches either do not aim at
optimizing startup performance or are not suitable to Native
Image, respectively.

8.1 Startup Performance
Optimization of startup performance is a hot topic in the
programming language community. Widely used virtual ma-
chines such as GraalVM [37] and the V8 JavaScript VM [17]
implement techniques to pre-initialize the execution con-
text [38, 55, 57]. Amazon Web Services Labs have recently
announced LLRT (Low Latency Runtime), “a lightweight
JavaScript runtime designed to address the growing demand
for fast and efficient Serverless applications” [2]. Several
techniques improve VM interpreter performance [6, 8, 44]
and reduce the startup time of the JIT compiler [5, 31, 41, 56].
In contrast to such techniques, our work focuses on a lower
abstraction level, i.e., the reduction of I/O traffic (and hence
page faults) during startup. The proposed ordering strategies
are complementary to these techniques.

8.2 Serverless and FaaS Optimization
Recent research focuses on the optimization of Serverless
platforms and functions, as reported by a recent systematic
review [52]. Techniques that optimize the cold start of the
Serverless platform are intrinsically orthogonal to our ap-
proach and include, for example, instance prewarm prepara-
tion, function scheduling, and snapshot-based optimizations.
The only approach we are aware of that optimizes cold-start
performance of FaaS at the application level is FaaSLight [28],
which reduces the code size of the application by separating
code related to application functionalities from other code
that can be loaded on-demand only when needed. Hence,
FaaSLight has a different focus and is complementary to our
approach.

8.3 Function Ordering
Related work in the context of mobile applications reorders
functions to reduce page faults and optimize startup time [22,
24] using PGO. However, these approaches do not focus
on function inlining and divergences between compilations.
Instead, they exploit profiles to modify compilation to reduce
the binary size by performing function outlining. In Native
Image, Graal’s inlining is required to remove programming
abstractions and produce performant binary code; outlining
functionsmay potentially decrease performance and increase

the number of objects in the binary file due to missed PEA
optimizations. Hence, the above strategies do not work well
in Native Image.
Differently from the proposed strategies, which focus

on improving the performance of short-running applica-
tions, several techniques try to improve cache locality of
long-running or large applications to speed up steady-state.
The PH algorithm [43] implements a heuristic based on
a weighted undirected dynamic call graph and is widely
used by state-of-the-art compilers and tools. The 𝐶3 algo-
rithm [42] improves the PH algorithm by using a directed
call graph instead of an undirected call graph. SARSA [10] is
a reinforcement learning algorithm that reorders functions
by exploiting a bidirectional function call graph. CodeMa-
son [53] reorders function by performing binary profiling
and rewriting. The GCC compiler offers several options to
reorder functions and basic blocks in the object file upon
linking time by using profiles or user-provided code annota-
tions [14]. In practice, GCC places hot and unlikely functions
into two distinct sections of the binary file named .text.hot

and .text.unlikely, respectively, but does not optimize their
ordering to reduce page faults.

8.4 Heap Ordering
To the best of our knowledge, no previous work attempts
to reorder objects in binary files to reduce page faults and
improve startup time. Despite heap ordering is particularly
relevant in Native Image (where the image heap occupies
from 40% to 60% of the binary size), related work mostly
proposes dynamic memory allocators to improve cache lo-
cality [9, 13, 18, 23], hence focusing only on runtime alloca-
tion. We note that some of these techniques exploit PGO. For
instance, MaPHeA [36] collects heap allocation and access
profiles to optimize the heap object management across all
memory hierarchies. HALO [48] is a post-link PGO tool and
runtime memory allocator that rearranges heap objects ac-
cording to allocation profiles. Other work [19, 46, 51] focuses
on improving cache locality by optimizing object data-layout.
Finally, we are not aware of any prior work that accurately
maps object identities across compilations or executions.
Prior work exploits a time-based technique to align execu-
tion traces obtained from separate runs [20, 34, 35], pos-
sibly allowing performance analysis. Unfortunately, these
approaches do not map the semantically same objects across
compilations and hence may not be directly employed.

9 Concluding Remarks
In this paper, we propose a profile-guided methodology to
reorder the layout of Native-Image binaries during compi-
lation, with the goal of improving startup performance and
locality. In particular, we propose two code-ordering strate-
gies and three heap-ordering strategies, aiming at reducing
page faults related to the code section and the heap-snapshot

Conference’17, July 2017, Washington, DC, USA Basso et al.

section of the binary, respectively. The heap-ordering strate-
gies are based on a methodology (proposed in this paper)
to match objects from a profile against the objects in the
profile-guided build, which is necessary as object identities
and the heap-snapshot contents are not persistent across
Native-Image builds of the same program.

To perform the ordering strategies, we propose a profiling
methodology to obtain the execution-order profile of meth-
ods and objects. We implement the ordering strategies in
GraalVM Native Image and implement the profiling method-
ology in a tracing profiler within the Graal compiler. Finally,
we evaluate the proposed code- and heap-ordering strate-
gies, showing that they are effective in both reducing page
faults and improving runtime performance, achieving an av-
erage page-fault reduction factor of 1.65× when using a SSD,
of 1.68× when using NFS, and an average execution-time
speedup of 1.59× (SSD) and 1.58× (NFS).

We plan to submit a publicly available artifact to the arti-
fact evaluation process.

Acknowledgments
This work has been supported by Oracle (ERO project 1332)
and by the Swiss National Science Foundation
(project 200020_188688). We thank the VM Research Group
at Oracle Labs for their support. Oracle, Java, and HotSpot
are trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

References
[1] Adam Horvath. 2012. MurMurHash3, An Ultra Fast Hash Algorithm

for C# / .NET. https://blog.teamleadnet.com/2012/08/murmurhash3-
ultra-fast-hash-algorithm.html

[2] Amazon Web Services - Labs. 2024. LLRT GitHub Repository. https:
//github.com/awslabs/llrt

[3] Amazon Web Services, Inc. or its affiliates. 2024. AWS Lambda. https:
//aws.amazon.com/lambda/

[4] Amazon Web Services, Inc. or its affiliates. 2024. Lambda execu-
tion environments. https://docs.aws.amazon.com/lambda/latest/
operatorguide/execution-environments.html

[5] Matthew Arnold, Adam Welc, and V. T. Rajan. 2005. Improving Vir-
tual Machine Performance Using a Cross-Run Profile Repository. In
OOPSLA. 297–311.

[6] Matteo Basso, Daniele Bonetta, andWalter Binder. 2023. Automatically
Generated Supernodes for AST Interpreters Improve Virtual-Machine
Performance. In GPCE. 1–13.

[7] Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder.
2023. Optimization-Aware Compiler-Level Event Profiling. ACM Trans.
Program. Lang. Syst. 45, 2, Article 10 (Jun 2023), 50 pages.

[8] James R. Bell. 1973. Threaded Code. Commun. ACM 16, 6 (Jun 1973),
370–372.

[9] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998.
Cache-Conscious Data Placement. In ASPLOS. 139–149.

[10] Weibin Chen and Yeh-Ching Chung. 2022. Profile-GuidedOptimization
for Function Reordering: A Reinforcement Learning Approach. In SMC.
2326–2333.

[11] Gilles Duboscq, Lukas Stadler, Thomas Wuerthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An
Extensible Declarative Intermediate Representation (APPLC’13). 1–9.

[12] Gilles Duboscq, ThomasWürthinger, Lukas Stadler, ChristianWimmer,
Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate
Representation for Speculative Optimizations in a Dynamic Compiler.
In VMIL. 1–10.

[13] Yi Feng and Emery D. Berger. 2005. A Locality-improving Dynamic
Memory Allocator. In MSP. 68–77.

[14] Free Software Foundation. 2024. Options That Control Optimization.
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

[15] Free Software Foundation. 2024. Program Instrumentation Options.
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

[16] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping
Serverless Computing Alive with Greedy-Dual Caching. In ASPLOS.
386–400.

[17] Google. 2024. V8 JavaScript Engine. https://www.v8.dev
[18] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. 1993. Improv-

ing the Cache Locality of Memory Allocation. In PLDI. 177–186.
[19] Christopher Haine, Olivier Aumage, and Denis Barthou. 2017. Rewrit-

ing System for Profile-Guided Data Layout Transformations on Bina-
ries. In Euro-Par. 260–272.

[20] Matthias Hauswirth, Amer Diwan, Peter F. Sweeney, and Michael C.
Mozer. 2005. Automating Vertical Profiling. In OOPSLA. 281–296.

[21] Michael Hind. 2001. Pointer Analysis: Haven’tWe Solved This Problem
Yet?. In PASTE. 54–61.

[22] Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev. 2023.
Optimizing Function Layout for Mobile Applications. In LCTES. 52–63.

[23] Alin Jula and Lawrence Rauchwerger. 2009. Two Memory Allocators
that Use Hints to Improve Locality. In ISMM. 109–118.

[24] Kyungwoo Lee, Ellis Hoag, and Nikolai Tillmann. 2022. Efficient
Profile-guided Size Optimization for Native Mobile Applications. In
CC. 243–253.

[25] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger,
Thomas Würthinger, and Hanspeter Mössenböck. 2018. Fast-Path
Loop Unrolling of Non-Counted Loops to Enable Subsequent Compiler
Optimizations. In ManLang. 1–13.

[26] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl,
Doug Simon, and Hanspeter Mössenböck. 2018. Dominance-Based
Duplication Simulation (DBDS): Code Duplication to Enable Compiler
Optimizations. In CGO. 126–137.

[27] Linus Torvalds. 2024. Linux perf GitHub Repository. https://github.
com/torvalds/linux/tree/master/tools/perf

[28] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi
Liu, Haoyu Wang, and Xin Jin. 2023. FaaSLight: General Application-
level Cold-start Latency Optimization for Function-as-a-Service in
Serverless Computing. ACM Trans. Softw. Eng. Methodol. 32, 5, Article
119 (Jul 2023), 29 pages.

[29] LLVM Project. 2024. Benchmarking Tips. https://llvm.org/docs/
Benchmarking.html

[30] LLVM Project. 2024. How To Build Clang and LLVM with Profile-
Guided Optimizations. https://llvm.org/docs/HowToBuildWithPGO.
html

[31] Zoltan Majo, Tobias Hartmann, Marcel Mohler, and Thomas R. Gross.
2017. Integrating Profile Caching into the HotSpot Multi-Tier Compi-
lation System. In ManLang. 105–118.

[32] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-
language Compiler Benchmarking: Are We Fast Yet?. In DLS. 120–131.

[33] Michael Kerrisk. 2024. nfs(5) – Linux Manual Page. https://www.
man7.org/linux/man-pages/man5/nfs.5.html

[34] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. 2006. Aligning Traces for Performance Evaluation. In IPDPS.
291–298.

[35] Todd Mytkowicz, Peter F. Sweeney, Matthias Hauswirth, and Amer
Diwan. 2007. Time Interpolation: So Many Metrics, So Few Registers.
In MICRO. 286–300.

[36] Deok-Jae Oh, Yaebin Moon, Do Kyu Ham, Tae Jun Ham, Yongjun
Park, Jae W. Lee, Jung Ho Ahn, and Eojin Lee. 2022. MaPHeA: A

https://blog.teamleadnet.com/2012/08/murmurhash3-ultra-fast-hash-algorithm.html
https://blog.teamleadnet.com/2012/08/murmurhash3-ultra-fast-hash-algorithm.html
https://github.com/awslabs/llrt
https://github.com/awslabs/llrt
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://www.v8.dev
https://github.com/torvalds/linux/tree/master/tools/perf
https://github.com/torvalds/linux/tree/master/tools/perf
https://llvm.org/docs/Benchmarking.html
https://llvm.org/docs/Benchmarking.html
https://llvm.org/docs/HowToBuildWithPGO.html
https://llvm.org/docs/HowToBuildWithPGO.html
https://www.man7.org/linux/man-pages/man5/nfs.5.html
https://www.man7.org/linux/man-pages/man5/nfs.5.html

Improving Native-Image Startup Performance Conference’17, July 2017, Washington, DC, USA

Framework for Lightweight Memory Hierarchy-aware Profile-guided
Heap Allocation. 22, 1, Article 2 (Dec 2022), 28 pages.

[37] Oracle and/or its affiliates. 2021. GraalVM. https://www.graalvm.org
[38] Oracle and/or its affiliates. 2021. GraalVM: Native Image. https:

//www.graalvm.org/jdk21/reference-manual/native-image/
[39] Oracle and/or its affiliates. 2024. Class String. https://docs.oracle.com/

en/java/javase/21/docs//api/java.base/java/lang/String.html#intern()
[40] Oracle and/or its affiliates. 2024. Cloud Functions. https://www.oracle.

com/cloud/cloud-native/functions/
[41] Guilherme Ottoni and Bin Liu. 2021. HHVM Jump-Start: Boosting Both

Warmup and Steady-State Performance at Scale. In CGO. 340–350.
[42] Guilherme Ottoni and Bertrand Maher. 2017. Optimizing Function

Placement for Large-scale Data-center Applications. In CGO. 233–244.
[43] Karl Pettis and Robert C. Hansen. 1990. Profile Guided Code Position-

ing. SIGPLAN Not. 25, 6 (Jun 1990), 16–27.
[44] Todd A. Proebsting. 1995. Optimizing an ANSI C Interpreter with

Superoperators. In POPL. 322–332.
[45] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and

ThomasWürthinger. 2019. An Optimization-Driven Incremental Inline
Substitution Algorithm for Just-In-Time Compilers. In CGO. 164–179.

[46] Shai Rubin, Rastislav Bodík, and Trishul Chilimbi. 2002. An Efficient
Profile-analysis Framework for Data-layout Optimizations. In POPL.
140–153.

[47] Barbara G. Ryder. 2003. Dimensions of Precision in Reference Analysis
of Object-Oriented Programming Languages. In CC. 126–137.

[48] Joe Savage and Timothy M. Jones. 2020. HALO: Post-link Heap-layout
Optimisation. In CGO. 94–106.

[49] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.
Partial Escape Analysis and Scalar Replacement for Java. In CGO.
165–174.

[50] The kernel development community. 2024. Documentation for
/proc/sys/vm/. https://www.kernel.org/doc/html/latest/admin-guide/
sysctl/vm.html?highlight=drop_caches#drop-caches

[51] Yongliang Wang, Naijie Gu, Junjie Su, Dongsheng Qi, and Zhuorui
Ning. 2022. Data Layout Optimization based on the Spatio-Temporal
Model of Field Access. In AEMCSE. 238–244.

[52] Jinfeng Wen, Zhenpeng Chen, Xin Jin, and Xuanzhe Liu. 2023. Rise
of the Planet of Serverless Computing: A Systematic Review. ACM
Trans. Softw. Eng. Methodol. 32, 5, Article 131 (Jul 2023), 61 pages.

[53] David Williams-King and Junfeng Yang. 2019. CodeMason: Binary-
Level Profile-Guided Optimization. In FEAST. 47–53.

[54] Christian Wimmer, Codrut Stancu, Kozak David, and Thomas
Würthinger. 2024. Scaling Type-Based Points-to Analysis with Satura-
tion. In PLDI. 24 pages.

[55] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul
Wögerer, Peter Bernard Kessler, Oleg Pliss, and Thomas Würthinger.
2019. Initialize Once, Start Fast: Application Initialization at Build
Time. Proc. ACM Program. Lang. 3, OOPSLA (2019), 184:1–184:29.

[56] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and Handong
Ye. 2018. ShareJIT: JIT Code Cache Sharing across Processes and
Its Practical Implementation. Proc. ACM Program. Lang. 2, OOPSLA,
Article 124 (Oct 2018), 23 pages.

[57] Yang Guo. 2015. Custom Startup Snapshots. https://www.v8.dev

https://www.graalvm.org
https://www.graalvm.org/jdk21/reference-manual/native-image/
https://www.graalvm.org/jdk21/reference-manual/native-image/
https://docs.oracle.com/en/java/javase/21/docs//api/java.base/java/lang/String.html#intern()
https://docs.oracle.com/en/java/javase/21/docs//api/java.base/java/lang/String.html#intern()
https://www.oracle.com/cloud/cloud-native/functions/
https://www.oracle.com/cloud/cloud-native/functions/
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html?highlight=drop_caches#drop-caches
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html?highlight=drop_caches#drop-caches
https://www.v8.dev

	Abstract
	1 Introduction
	2 Background
	2.1 Ahead-of-time (AOT) Compilation
	2.2 Heap Snapshotting
	2.3 Profile-guided Optimizations (PGO)

	3 Profile-guided Binary Reordering
	4 Code Ordering
	4.1 Compilation-Unit-based Ordering
	4.2 Method-based Ordering

	5 Heap-Snapshot Ordering
	5.1 Incremental ID
	5.2 Structural Hash
	5.3 Heap Path

	6 Profiling Methodology
	6.1 Tracing Profiler
	6.2 Post-Processing Analyses

	7 Evaluation
	7.1 Evaluation Settings
	7.2 Page-Fault Reduction
	7.3 Execution-Time Speedup

	8 Related Work
	8.1 Startup Performance
	8.2 Serverless and FaaS Optimization
	8.3 Function Ordering
	8.4 Heap Ordering

	9 Concluding Remarks
	References

